SECOND
FIELD CONFERENCE
OF
PENNSYLVANIA GEOLOGISTS

MAY 28-30, 1932

Around and near the "Forks of the Delaware", and various and sundry "Gaps"

Joint Hosts

Departments of Geology at Lehigh University and Lafayette College.

Committee

D. Fraser
A.H. Fretz
B.L. Miller
L. Whitcomb
C.K. Cabeen
H.A. Itter
H. Koerner
F. Ward

\{ \text{Lehigh} \}
\{ \text{Lafayette} \}
Legend for outline map (opposite) of the area traversed.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.L.</td>
<td>Triassic Lowland, underlain by red sandstone and shale and basic intrusives of Triassic age.</td>
</tr>
<tr>
<td>A.P.</td>
<td>Allegheny Plateau - underlain chiefly by Mississippian rocks.</td>
</tr>
<tr>
<td>R.V.</td>
<td>Ridge and Valley division - underlain by Devonian and Silurian rocks.</td>
</tr>
<tr>
<td>H.L.</td>
<td>Harrisburg Peneplane - underlain chiefly by Ordovician shales.</td>
</tr>
<tr>
<td>S.L.</td>
<td>Somerville Peneplane - underlain chiefly by Cambro-Ordovician limestones.</td>
</tr>
<tr>
<td>R.P.</td>
<td>Reading Prong - underlain chiefly by pre-Cambrian gneisses and Cambrian quartzite.</td>
</tr>
</tbody>
</table>

Route of trip.

Scale - roughly 5 miles to the inch.
DELAWARE WATER GAP–STROUDSBURG REGION

COLUMNAR SECTION

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>MEMBER</th>
<th>DESCRIPTION</th>
<th>THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLEISTOCENE</td>
<td>Wisconsin</td>
<td>Till on uplands, stratified drift as terraces and kames along lowlands. Weathering normal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Illinoian</td>
<td>Scattered areas of both till and stratified drift. Deeply weathered.</td>
<td></td>
</tr>
<tr>
<td>TRIASSIC</td>
<td>Brunswick</td>
<td>Soft bright-red shale and fine sandstone. Metamorphosed to hard dark baked shale adjacent to large intrusive masses of diabase. Upper beds capped by coarse quartzose and limestone 'fanglomerate'.</td>
<td>12,000</td>
</tr>
<tr>
<td></td>
<td>Lockatong</td>
<td>Hard dark-red to dark-gray shale and argillite and hard impure limestone. Locally metamorphosed to hard baked shale.</td>
<td>3,000-3500</td>
</tr>
<tr>
<td></td>
<td>Stockton</td>
<td>Chiefly tan and reddish arkosic sandstone with some conglomerate and red argillaceous sandstone and shale.</td>
<td>3,000</td>
</tr>
<tr>
<td>DEVONIAN</td>
<td>Chemung</td>
<td>Red, gray and green, continental beds north of Analomink.</td>
<td>3500</td>
</tr>
<tr>
<td></td>
<td>Portage</td>
<td>Gray sandstone and shale. Ithaca (?) fauna south of Analomink.</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>Hamilton</td>
<td>Gray, brown-weathering, sandstone and shale. Abundantly fossiliferous in Brodhead Creek Valley. Grades up into Ithaca (?) and down into Marcellus.</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>Marcellus</td>
<td>Black or gray shale, the latter sometimes slightly arenaceous: usually barren but locally highly fossiliferous.</td>
<td>800 ?</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>MEMBER</td>
<td>DESCRIPTION</td>
<td>THICKNESS</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Onondaga</td>
<td>Black to dark gray limestone, the lower part very cherty; sparingly fossiliferous.</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Oriskany</td>
<td>Gray to brown conglomerate and sandstone above grading down into quartzitic or cherty beds; abundant casts of fossils.</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Helderberg</td>
<td>Gray limestone and shale; mostly fossiliferous. Several divisions recognized.</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Poxono Island</td>
<td>Green, somewhat calcareous or sandy, barren shale concealed locally under debris of Cherry Creek Valley.</td>
<td>200 ?</td>
</tr>
<tr>
<td></td>
<td>"Clinton"</td>
<td>Brown, red, green and white sandstone and shale; apparently barren throughout. Grades down into Shawangunk.</td>
<td>2000 ±</td>
</tr>
<tr>
<td></td>
<td>Shawangunk</td>
<td>Lower portion very massive, gray conglomerate and sandstone; upper part brown. Arthrophyocus and eurypterids reported from lower part. Basal contact concealed locally.</td>
<td>1700 ±</td>
</tr>
<tr>
<td></td>
<td>Jackson-burg</td>
<td>Dark gray to black argillaceous limestone low in magnesian carbonate. Cement rock.</td>
<td>600 ±</td>
</tr>
<tr>
<td></td>
<td>Beekman-town</td>
<td>Interbedded low and high magnesian limestones. Some fossil mollusca.</td>
<td>1000 ±</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>MEMBER</td>
<td>DESCRIPTION</td>
<td>THICKNESS</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>CAMBRIAN</td>
<td>Allentown</td>
<td>Dolomitic limestone, thinly and thickly bedded containing Cryptozoon.</td>
<td>1500 ±</td>
</tr>
<tr>
<td></td>
<td>Tomstown</td>
<td>Dolomitic limestone usually thick massive beds alternating with shaly strata.</td>
<td>1000 ±</td>
</tr>
<tr>
<td></td>
<td>Hardyston</td>
<td>Siliceous sandstone and pebbly conglomerate in places metamorphosed to quartzite yellow, brown, reddish.</td>
<td>300 ±</td>
</tr>
<tr>
<td>PRE-CAMBRIAN</td>
<td>Sedimentary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Franklin (?)</td>
<td>Coarsely crystalline roughly foliated limestone containing graphite flakes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Igneous (and sedimentary)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Byram</td>
<td>Gray granitoid light colored acid gneiss - composed of microcline, microperthite, hornblende, pyroxene and sometimes mica.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pochuck</td>
<td>Dark granular basic gneiss - composed of hornblende, pyroxene, oligoclase and magnetite.</td>
<td></td>
</tr>
</tbody>
</table>
Trip No. 1 -- Saturday, May 28

TRIASSIC TRIP

---###---

✓ 0.0 Start at Markle Hall, Lafayette College \[t..1:15
✓ (1) 1.1 Lehigh Valley Station \[. Ar. 1:20
 Edgewise Conglomerate in Kitt. \[. Lv. 1:30
 Route 611 south.
✓ 2.0 N. Dip -- Kittatinny Ls.
✓ (2) 2.5 Hardyston Conglomerate \[. Ar. 1:34
 Pre-Cambrian \[. Lv. 1:45
 Dip of Kitt. Ls. and
✓ 3.3 Truncation by Somerville Planeplane.
✓ (3) 6.8 Giant Ripple Marks; Kitt. Ls. \[. Ar. 1:54
 Lv. 2:02
✓ (4) 3.7 Wisconsin Gravel Pit, \[. Ar. 2:10
 Riegelsville \[. Lv. 2:24
 Turn, go back to stop light,
 10. Riegelsville, sharp left.
✓ (5) 11.1 Illinois Drift \[. Ar. 2:29
 Lv. 2:39
✓ 11.4 Sharp variation in dip of
✓ 11.5 Kittatinny.

11.6

✓ 12.1 Junction Route 611
✓ (6) 12.2 Turn left, 100 yards -- Durham Cave \[. Ar. 2:47
 Turn south on 611.
 Lv. 3:02

✓ (7) 12.9 Monroe. Contact Triassic & Cambrian \[. Ar. 3:05
 Lv. 3:30
✓ 14.1 Kintersville; left on 32
✓ 16.3 Turn right first cross road; uphill.
✓ 16.7 Turn left at Fork.
Trip No. 1 - page 2

✓ (8) 17.4 Trap. -- Ringing Rocks. Ar. 3:42
 Lv. 4:07

✓ 19.3 Bridgeton; Junction Route 32
 Right on 32.

✓ (9) 28.7 Contact -- Brunswick & Lockatong . . . Ar. 4:38
 Lv. 4:43

✓ 30. Point Pleasant, left across bridge.

✓ (10) 30.4 Byram, N.J. -- Lockatong Ar. 4:47
 Lv. 4:57

Recross river, north on 32 to

✓ 41.5 Cross river to N.J.
 Left 1st street.

✓ (11) 43.8 "Fanglomerate" -- Ar. 5:30
 Lv. 5:45

Continue to Riegelsville, cross
river, back to Easton on Route 611.
SLATE AND CEMENT TRIP

Saturday afternoon, May 28

0.0 Hotel Easton.
Lv. 1:00PM

Follow Bushkill Creek to Tatamy then west and north to Stockertown.

8.7 Stockertown - Hercules quarry.

14.6 Bangor.

(1) 17.9 Stop. Pen Argyl. Struco marbleizing plant. Slate is lacquered to resemble marble, onyx, serpentine, etc.
Ar. 1:45
Lv. 2:15

(2) 18.7 Stop. Parsons Brothers soft vein slate quarry and plant. Deepest quarry in district - 700 feet deep. Arrangements will be made for such persons as care to do so to descend to bottom of quarry - a thrilling adventure. Sawing of slate by wire rope. Method of preparation of slate for roofing, blackboards, vaults, etc.
Ar. 2:18
Lv. 3:45

22.6 Wind Gap Village.

(3) 33.9 Stop. Nazareth cement rock quarry. Characteristic cement rock. Specimens of bryozoa (Prasopora), crinoid stems and occasional brachiopods.
Ar. 4:15
Lv. 4:45

(4) 36.7 Stop. Small quarry along road. Basal high calcium rock-cement limestone member of Jacksonburg formation.
Ar. 4:53
Lv. 5:08

42-43 Note the slate fence posts along the road in this district.

(5) 44.1 Stop. Chapman quarries in hard vein member of Martinsburg. Fine ribbon slate. Overturned folds.
Ar. 5:20
Lv. 5:50

46.9 Bath.

Ar. 6:00
Lv. 6:30

Return to Easton.
TRIP No. 3 – Sunday, May 29

Note: To cover the ground it will be necessary to hold closely to the schedule. Whistles will remind you of the leaving time.

0.0 Leave Hotel Easton 7:30
W. to Circle; N follow trolley to end of line; Left diagonal, winding road to top of Chestnut Hill.

(1) 2.7 Stop. Top Chestnut Hill, ruins of old inn.Ar.7:40
(1) Panorama to N. – Succession, pre-
Cambrian to Silurian (Mt.). Penampilne history. Drainage development, including Gaps.
(2) View to S. – Valley train (Wisc.) in Delaware Valley.

(2) 4.6 Stop. Serpentine-Talc Quarry Ar.8:07
Pre-Cambrian. Chiefly serpentine and t alc rock.
The original materials were prob-
ably mostly sediments, including impure dolomitic limestones, with possibly an igneous member or so.
This series suffered dynamic meta-
morphism during which the main qualities of the rocks, as we see them today, were produced.
Still later, movement along shear and joint zones has developed additional "slip fibre".
Reference: F.B. Peck: Talc and Ser-
pentine of Northampton County, etc;
Accessory minerals:
Fairly common:
Phlogopite
Tremolite
Dolomite
Calcite
Pyrite

Less Common to Rare:
Molybdenite Chlorite
Graphite Prochlorite
Biotite Vermiculite
Actinolite Eastonite
Sphalerite Titanite
Chalcopyrite Zircon
Topaz? Retinalite
Hydromagnesite Marmolite
Pitchblende Bowëñite
Strontiocalcite Porcellophite
Aragonite Thermophyllite
Breunnerite Chryscite
Fluorite Chalocite
Barite? Galena
Celestite? Cuprite
Diopside Hematite
Coccolite Magnetite
Salite Ilmenite
Augite Limonite
Nephrite Malachite
Wernerite Gypsum
Epidote

5.2 Slow - Pot Holes in River

(3) 5.5 Stop. Weygadt Cut Ar. 8:35
Oneisse and schists contorted and Lv. 8:50
intruded by pegmatite granite which
often contains tourmaline. Prominent
slickensides and joints. All Pre-Cambrian.

5.8 Wisconsin Terraces

6.5 Slow - Kittatinny Limestone
Variable bedding and dip

(4) 6.9 Stop. Kittatinny Limestone Ar. 8:53
Probable fault (obscure). Variation
in structure each direction. Gash
veins; breccia; near Cambro-Ordovician
contact. Well developed Wisconsin
Terraces on Jersey side.
Limestone continues. Where concrete
road changes to old macadam - Jackson-
burg Limestone (cement rock).

(5) 11.2 Stop. Wisconsin Stratified Drift Ar. 9:05
Cut in face of terrace. Coarse
texture. Great variety of rock.
Much subangular. Normal weathering.

(6) 12.2 Slow. Fold in Slate
Martinsburg. Slaty cleavage.
Ribbons show bedding.

During next mile:
Several cuts in slate. Structure varies
from monocline to close folding and
crumpling. Quartz veins.

14.0 Enter area of Wisconsin Drift
Slate bed rock

Go through Bangor (Route No. 611)
Trip No. 3 - Page 3

\[7\] 19.5 Stop. Bangor Slate Quarry Ar. 9:37
Ribbons show folded structure (\(\text{w}\) wall) Lv. 9:48
axial plane about horizontal. Wisconsin
till.
On uplands beyond, note Wisconsin
drift fragments largely quartzite and
sandstone; also occasional small swamps.

\[22.0\] Enter Kame Area

\[23.7\] Slow. Kettle Holes among Kames Ar. 9:59
Through Mt. Bethel

\[25.2\] Stop. Panorama Point Ar.10:03
Jacoby Kames in low foreground. Water Lv.10:15
Gap and Mt. in distance. Penepanes.

\[26.6\] Stop. Quarry in Kittatinny Limestone,Portland. Ar.10:18
Faulted up into area of Martinsburg. Lv.10:30
Ground water. Unconformity - Pleis-
tocene on Cambrian.

Through Portland. North part of town
on Wisconsin Terrace.

\[27.8\] Stop. High Wisconsin Terrace Ar.10:35
One of several Kame terraces between Lv.10:45
Delaware and Water Gap. Some are on
Jersey side. Very coarse texture;
great variety of rock fragments;
largely subangular; normal weathering.

\[30.3\] Stop. (Entrance to Delaware Water Gap on . . Ar.10:52
Route 611) The massive, gray Shawangunk Lv.11:05
(Tuscarora) conglomerate and sandstone
"holds up" the ridge and forms cliffs.
Talus from these beds covers the Sha-
wangunk-Martinsburg contact. At left
turn of highway, thin black shale lenses
among the massive beds carry sparse eury-
pterid fragments. Arthrophycus has been
reported from the lower part of the
Shawangunk on both sides of the river.
Note off-set of main ridge of Blue Moun-
tain ("Kittatinny Range") at the watergap
as shown on the topographic sheet.
31.0 Slow. Along highway opposite and above bath house (N.J. side). Rock cuts along the left side of the road expose the transition beds from gray or brown Schuylkill to red and green "Clinton" (Bloomsburg of the Swartzes, High Falls of N.J. Survey). On New Jersey side above bath house, the red beds form the Kemmersville double-crested anticline broken by small faults. As one passes northward, observe stratification of the "Clinton" and the glacial grooving along the rock cuts facing the highway. To the northeast the open, island-dotted, upper Delaware Valley is glimpsed making a strong contrast with the narrow valley and swift water at the gap.

31.5 Slow. Site of burned Kittatinny Hotel to Delaware Water Gap Village. Brownish Sandstone and some shale gradually replace the red beds upward (to the north) and dip under Cherry Valley where the Poconos Island is concealed.

32.5 Slow. Northward from Delaware Water Gap Village along old highway (Route 611, right fork at north side of village); the road traverses the middle one of three river terraces. The highest is to the left, and the lowest is occupied by the line of the Delaware, Lackawanna and Western Railroad.

33.0 (12) Stop. Abandoned limestone quarry, east end of Godfrey's Ridge, about three-fourths of a mile north of Delaware Water Gap village. The upper part of the Helderberg is exposed underlying the Oriskany which is visible in trees at top of quarry face. In fallen blocks of "ribbon" limestone are abundant ostracoda.

34.7 Slow. Along Route 612 across Godfrey's Ridge:

35.5 a. South slope, ascending from Cherry Creek Valley. Succession of exposures: Helderberg, Oriskany, Esopus. The Oriskany varies from a cherty or quartzitic below to a sandy and conglomeratic phase above suggesting the Shriner and Ridgely members, respectively, of Maryland. It is full of casts of fossils.
(13) 31.1 b. Stop. At refreshment stand, top of grade. Ar.11:40
Looking back, the water gap is clearly seen to the southeast. In the valley directly below the highway may be seen the meanders of Cherry Creek.

c. Crest and north slope of Godfreys Ridge along highway. Here is exposed the highly sheared Esopus "grit" the upper part of which may be Schoharie since it is fossiliferous. The fauna has not been determined.

d. Base of North slope Godfreys Ridge at foot of grade. Abandoned highway grade to left of present route, as well as the new road cut through dark, cherty Onondaga limestone overlying the Esopus-Schoharie (?) beds. The Onondaga is rather barren.

(14) 37.8 Stop. Leaving Stroudsburg via Route 90 northward, turn right down side street at top of first rise at northern edge of town to quarry. Exposure of black to gray, sometimes slightly arenaceous Marcellus shale. This member, usually quite barren, is here highly fossiliferous. The following forms have been identified:

Bryozoa, Indet.
- BEACHLIOPODA
 - Lingula cf. delia
 - L. ligea
 - Orbiculoidea sp.
 - Granellia hamiltoniae
 - Granellia?
 - Chonetes mucronatus
 - C. sictulus
 - C. setigerus
 - Strophalosia truncata
 - Camarotoechia prolificata
 - Liorpynchus limitare
 - L. laura
 - L. laura (?)
 - Tropidoleptus carinatus
 - Spirifer mucronatus (?)
 - Ambocoelia umbonata
 - A. nana
 - Brachiopod, indet.

Pelecypoda
- Panenka costata
- Nuculites triqueter
- Liopteria laevis
- Actinopteria muricata
- Nyassa subalata
- Aviculopecten invalidus
- A. scabridus
- Lunulocardium curtum
- Modiomorpha alta
- Allocardium alternatum (?)

Gastropoda
- Styliolina fissurella

Cephalopoda
- Nepbritoceras Bucinum
- Bactrites clavus (?)

Arthropoda
- Phyllocarid, indet.

Piscics
- Tooth

Plantae, indet.
Trip No. 3 - page 6

41.0 Stop. On Route 90, about two miles north of Stroudsburg. Reef in midst of Hamilton. Brine, submassive, pitted beds. Highly fossiliferous horizon. Good collecting in the exposure and in debris thrown out at right side of road. The following forms have been identified from this locality.

COELENTERATA
- Pleurodictyum sp.
- Streptelasma rectum
- Zaphrentis prolifica
- Z. simplex
- Z. sp.
- Amplexus cf. hamiltonae
- Aulacophyllum
- Craspidophyllum archiaci
- Ceratopora cf. dichotoma
- C. jacksoni
- Syringopora cf. maclurei
- Faveolites cf. hamiltoniae
- F. cf. clausus

ECHINODERMATA
- Crinoid "stem joints"

BRYOZA
- Hinderella?
- Monticulopora sp.
- Fenestella cf. biperforata
- F. cf. laevinodonta
- F. cf. parallela
- F. sp.
- Thamniscus sp.
- Taeniopora exigua
- Bryozoan, indet.

PELICYPODA
- Liopteria sp.
- Actinodesma erectum
- A. sp.
- Aviculopecten sp.
- Modiomorpha concentrica
- Pelecypod, indet.

GASTROPODA
- Turbo sp. nov.
- Gephaloidea
- Spiroceras sp.
- Arthrophytha
- Productella spinulicosta
- Phacops rana
- P. sp.
- Dalmanella exiguella
- Dalmanites boothi

41.8 Slow. Northward and eastward from Station 15. Continue north along Route 90, crossing Bodhead Creek. Upper Hamilton underlies the creek bed at bridge. Turn eastward to intersection of Routes 90 and 190. Rock cuts at intersection (east side Route 190) carry Ithaca (?) fauna, the highest marine known locally, since the Chemung is represented by continental green, red and gray beds northward through Analomink. Turn south (right) at intersection and return via Route 190 to Stroudsburg via East Stroudsburg.
Trip No. 3 – Page 7

46.0 Stroudsburg Ar.12:50
 Eat Lunch Here
 Lv. 1:30

48.8 Kames on left

50.0

51.3 Henrysville Village – open valley on left.

52.5 Kames fill open valley

54.6 Forks of concrete road. Keep right on Route 209.

60.0 On the left the far ridge is the Pocono Mts. The glacial material over which we are now traveling is much more evenly distributed than that closer to Stroudsburg.

69.4 Turning left toward Palmerton, we drive across the Catskill (?) and at Palmerton are on the Silurian.

74.4 Palmerton. The oxide plant of the N.J. Zinc Co. is seen on the left as we enter the town. As we leave Palmerton, a sand pit in the Griskeny is seen at the top of the ridge to the right. Turn right at the intersection with the main highway.

(16) 77.0 Stop. Onondaga limestone consisting of blue . . . Ar.2:55 siderite and calcareous stone has been mined for manufacture of deep red metallic paint. Paint ore in sheds contains many fossils. N.J. Zinc Co.'s plant is seen to the south above which can be seen outcrops of the red Clinton (?) shales.

78.4 Slow. Clinton (?) shales are seen in the road cuts as we drive through Lehigh Gap where we go down the section this morning at Delaware Water Gap.

79.0 Resistant Silurian forms the ridge. Continue on Route 145 toward Bethlehem.

(16a) 80.0 Stop. Unconformable contact between Martinsburg (Ordovician) and Shawangunk (Silurian). A very interesting exposure showing an angular unconformity between the two formations and other evidence of an erosional interval.

82.0 Do not go into Slatington but follow Route 145 which turns to left at edge of town. Martinsburg shale outcrops along the road in numerous places, as well as along the river to the left.
86.0 The Lehigh River has entrenched its bed to a depth of about 400 feet in this area. Here we cross the Lehigh, drive along the inside of an entrenched meander and rise close to the Harrisburg Peneplane level.

89.0 Martinsburg slaty-shale along the road shows numerous crumplings and other minor structures.

91.0 Just beyond the small town of Cementon are several quarries in cement rock.

91.5 Along the river to the left is the site of the first cement plant in the Lehigh Valley.

91.8 Turn to right off of main road to—

(17) 92.4 Stop. Coplay Cement Co., new quarry. Over— ... Ar.4:10 turned and recumbent folds in bluish-black argillaceous Jacksonburg limestone.

93.1 Vertical kilns used by Coplay Cement Co. many years ago. Return to highway and turn right toward Bethlehem.

(18) 94.2 Stop. Quarry between Catasauqua and Northampton. Ar.4:35 Excellent overturned folds in Beekmantown limestone. Structure indicates overturning from the south.

96.2 Catasauqua

97.2 After leaving Catasauqua we pass over the Somerville (Bethlehem) peneplane.

98.6 Just to the right of the road approaching Shoenersville is one of the old iron pits, one among many such pits in this area.

100.2 Turn to the left on gravel road leading to Bethlehem. Keep left at next fork, and at subsequent forks keep the metropolis of Bethlehem in view ahead and be governed accordingly.

(19) 102.7 Stop. Monocacy Creek quarry to left showing ... Ar.5:15 Allentown limestone with Cryptozoon, oolitic limestone, folding and faulting.

(20) 106.3 Stop. Lookout Point on Lehigh University Campus, Ar.5:40 South Mountain. Limestone-shale valley below with a prominent gneissic hill projecting above the limestone. Blue Mt. is in the distance, and gneisses of the Reading Pron, beneath and behind us.

"And now we eat" — next stop — Hotel Bethlehem — Dinner 7:00.
Byram and Pochuck gneiss

Lookout Point (South Mountain)

Hardyston sandstone-quartzite

Lehigh River

Tomstown limestone

City of Bethlehem

Allentown limestone

Tomstown limestone

Allentown limestone

Fault

Town of Catasauqua

Beekmantown limestone

Jacksonburg shaly limestone (cement rock)

Lower soft vein slate

Middle sandy member

Upper hard vein slate, Martinsburg shale

Ordovician-Silurian Unconformity

Lehigh Gap. Shawangunk sandstone and cong.

"Clinton" shale

Town of Palmerton

Helderberg limestone and shale

Oriskany sandstone

Scale: Horizontal - 1" = 2½ miles
Vertical - 1" = 2000 feet
SAUCON VALLEY TRIP

Monday forenoon, May 30

0.0 Leave Hotel Bethlehem at 7:45 AM

(1) 4.1 Stop. Uebberoth pit of the old zinc mines at Friedensville. Most important zinc mines in Pennsylvania. Worked from 1853 to 1893.

(2) 4.5 Old Hartman pit

(3) 9.3 Stop. Coopersburg stone polishing works. Only place in State where the Triassic diabase is being utilized for monuments.

(4) 14.2 Stop. Jacksonburg limestone outcropping in a road cut below Bowers Rock. Area detached from main mass by distance of 9 miles due to faulting.

(5) 18.4 Stop. Limeport quarry where Martinsburg (?) slate unconformably overlies the Allentown limestone. Small area 13 miles south of main shale bolt.

(6) 19.5 Stop. Graphite prospect pit.

(7) 20.9 Stop. Vera Cruz Station. A number of old pits in gneiss, from which magnetite ores were mined, are found on the slopes behind the station.

(8) 22.2 Stop. The site of the old diggings from which the Indians obtained jasper for weapons and implements. Near the town of Vera Cruz.

(9) 26.3 Stop. A source of sand and gravel in a solitary kame lying northeast of Emmaus.

(10) 28.0 Stop. Barnes place. Hardyston quartzite partially altered to jasper and limonitic iron ore.

(11) 32.0 Stop. Sand pit. Decomposed gneiss quarried for sand.

Return to Bethlehem
Trip No. 5 -- Monday, May 30.

COMPARISON OF ILL. and WIS. DRIFT.

---#---

0.0 Start at Markle Hall 8:00

(1) 1.0 Top Chestnut Hill Ar. 8:04
Weathering of Pre-Cambrian since
Ill. stage.Lv. 8:12

(2) 2.7 N.E. Chestnut Hill Ar. 8:16
Terrace of Ill. Strat. drift.
Cut. Much weathering.
Lv. 8:34

(3) 6.5 Quarry -- Ill. Till. Ar. 8:57
On limestone (Jacksonburg).
Much weathering.
Lv. 9:27

(4) 8.7 Cut in Wis. Terrace Ar. 9:35
Strat. Drift.
Normal weathering.
Lv. 9:45

Martin's Creek -- turn right.
Turn left at forks of concrete.

11. Notice that bed rock is generally near surface.

(5) 12.1 Mt. Pleasant Ar. 9:53
S. edge of Wis. ice.
Absence of morainal topography.
Lv. 10:00

14.8 Through Richmond.

16.7 Village of Stone Church --
turn right.

(6) 18.0 Cut Wis. Till Ar. 10:17
Normal weathering.
Rounded fragments.
Lv. 10:29

Left turn just after crossing Creek.

20.2 Strike Concrete road --
Turn right.

21.6 Mount Bethel --
turn left.

22.0 R.R. track --
turn right.
Trip No. 5 - page 2

(7) 22.3 Portland Sand and Gravel Co. Ar. 10:52
 Kames. Lv. 11:12
 Coarse texture, striated boulders.

 (Note:—Can visit high terraces along Delaware, but it will take 35
 minutes additional time).

 22.9 Back to Mount Bethel (Village) --
 turn right on concrete.

 23.5 Turn right on macadam.

 23.9 Enter Kame area.

 24.3 Kettle hole among kames --
 to right, across R.R.

 26.0 Leave Kames.

 East Bangor.

 29.2 Bangor -- 11:30
 West on Route No. 202

 30.4 Turn left off of concrete.

(8) 30.6 Wis. Moraine : Ar. 11:35
 Typical topography.
 Contrast with subdued Ill. topography to W.

 32.0 Turn left.
 on Ill. till.

 32.4 Cross Creek.
 Now in Wis. Moraine.

 32.7 Turn right.

 Travel winding road along Moraine to --

 34.1 Ackermanville -- 12:00
 End of Wis. Morainal topography.

 45.0 Back to Easton. 12:30
Trip #6 THE SPITZENBERG

Monday forenoon, May 30

00.0 miles, Hotel Bethlehem, proceed north on Main St.

00.3 At 2nd traffic light, turn left on West Union Street (U.S.22)

05.8 U.S.22 joined by Penna. 43. Go straight.

06.8 U.S.22 turns left, go straight on Penna. 43.

08.3 Penna. 43 turns left.

20.0 New Smithville. On left at far side of town is one of the best examples of Pennsylvania Dutch barn paintings to be seen in this neighborhood.

23.7 Lenhartsville R.R. Station. Party meets here at 9:00 A.M. Driving time from Bethlehem approximately one hour for average driver.

29.0 Turn right on Penna. 143.

30.1 Follow Penna. 143 up hill to the right.

32.2 Right on Penna. 143 through covered bridge.

32.3 Greenawald Station. Go right.

32.4 Park cars.

Trip starts up old incline to quarry and then up the Spitzenberg. The quarry is in red and green Martinsburg shale, which was quarried for filler for linoleum. There are many halos around mineral particles, also some copper minerals. The conglomerate which makes up the upper portion of the hill is different from any other rock found in the region and its age is unknown. Being an unfossiliferous rock, so far as is known, the pebbles become of great importance in trying to unravel the history.